The GDELT Project

Using GSG TV News Embeddings For Multimodal Search: Search A Decade Of TV News Using An Online News Article

Earlier today we demonstrated how to use our new GSG TV News Embeddings to semantically search television news for references to a known fact check claim. By converting a three-sentence fact check claim into an embedding using the same model we used for television news, we can identify references to it across television news simply by computing its cosine similarity against the other 189 million sentences we've processed and identifying those with the highest similarity scores. Since the DAN-based Universal Sentence Encoder model we use for the GSG TV News Embeddings doesn't have a fixed input token size and has an essentially flat inference time with respect to input length, we can convert entire documents to embeddings. This means that instead of just searching television news for a three-sentence fact check claim, we can search it for statements highly similar to any arbitrary online news article!

Let's start with this CNN article from earlier today titled "California hydropower plant forced to shut down as water levels fall at Lake Oroville" that connects climatic-induced drought to critically low water levels at Lake Oroville that forced its hydropower plant to be taken offline.

First, we need to convert the article into a USE embedding. To do so, create a free new Colab notebook and run the following code, replacing the "FULL TEXT OF ONLINE ARTICLE" below with the copy-pasted text of the CNN article:

#load libraries...
import tensorflow_hub as hub
import tensorflow as tf
!pip install tensorflow_text
import tensorflow_text as text # Needed for loading universal-sentence-encoder-cmlm/multilingual-preprocess
import numpy as np

#normalize...
def normalization(embeds):
norms = np.linalg.norm(embeds, 2, axis=1, keepdims=True)
return embeds/norms

sent = tf.constant(["FULL TEXT OF ONLINE ARTICLE"])
embed_use = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
sente = embed_use(sent)
sente = normalization(sente)
print(repr(sente))

It loads the necessary libraries and converts the verbatim three-sentence fact check claim summary as-is into the USE vector representation, printing a 512-dimension array:

<tf.Tensor: shape=(1, 512), dtype=float32, numpy= array([[ 0.04630536, -0.04385197, -0.05280872, -0.04773887, -0.00309931, 0.05450295, -0.02673355, -0.05545911, 0.05327506, 0.04394556, -0.03168765, 0.05503967, 0.00442976, -0.05656279, 0.05117863, 0.0158463 , 0.05592725, 0.03598066, -0.03839573, -0.00109333, -0.05644736, -0.05434908, -0.02864576, -0.04568801, 0.05557097, -0.02160742, -0.03676632, -0.00822768, 0.00673328, 0.05361567, 0.02790285, 0.01862041, -0.04964391, -0.00603407, 0.02612479, -0.05509547, 0.01189164, 0.02481853, 0.05586883, 0.04517639, 0.0466411 , 0.050674 , 0.04127763, -0.05451256, -0.05663854, 0.05264238, -0.01035258, 0.02292279, 0.01242081, -0.04307327, -0.05607928, 0.01975088, -0.0522441 , -0.03337459, 0.00374916, 0.03055446, -0.05663315, -0.01754221, 0.05500044, 0.04655377, 0.01067017, -0.04976329, 0.05180267, -0.05604182, -0.05621086, -0.05376201, 0.05308988, 0.05225808, 0.02736193, 0.05039906, 0.04467546, 0.04993341, -0.01599472, 0.05476574, -0.03768978, 0.03524011, 0.038475 , -0.04673229, 0.05104368, 0.03713217, 0.05663855, -0.03777216, 0.04949455, 0.05450713, 0.0121822 , 0.04588546, 0.03606191, -0.05663596, -0.00443359, -0.00486312, 0.04559771, -0.03937602, 0.05089479, 0.05131284, -0.05663429, 0.011048 , -0.03472014, 0.05651702, 0.05602308, -0.03779978, -0.04273533, 0.02687778, -0.00161195, 0.0483719 , 0.05653317, -0.02144088, -0.02948533, -0.03920264, 0.05462149, -0.04935208, -0.05296955, -0.04880546, -0.00295182, 0.04659003, -0.05461466, -0.01888734, 0.05398951, 0.02089173, 0.05544703, 0.05631928, 0.05661533, -0.01530546, 0.02082386, 0.0565156 , 0.0480477 , 0.05597575, 0.05648562, -0.03431455, -0.02098618, 0.05572988, 0.04933405, 0.05657511, 0.05287464, -0.04752011, -0.0127286 , -0.05533136, -0.05246781, -0.05286954, -0.01377515, -0.05659974, -0.05340074, 0.05663871, -0.05304778, 0.0356891 , 0.05625559, -0.03166396, -0.02535708, 0.05566574, -0.05334753, 0.03626539, -0.05652655, -0.02445913, -0.04480174, -0.0536372 , -0.05637573, 0.05520798, 0.00620194, 0.00769248, -0.00251708, 0.02002978, 0.01431433, -0.05497971, 0.05050481, 0.00775918, -0.05434256, 0.05292607, 0.05663849, 0.03883202, -0.05636555, 0.02466718, 0.05662578, -0.0565693 , 0.05112001, -0.03461725, -0.05163195, 0.05614306, 0.01156624, -0.02751734, -0.05663678, -0.04754735, -0.03358746, 0.04703908, -0.05295394, -0.0298285 , 0.0561368 , -0.00339463, -0.04886793, -0.05578013, -0.00150067, -0.04190002, -0.03766162, -0.05042543, -0.0564624 , 0.05586027, -0.05423312, -0.05428811, 0.01233629, -0.03560453, 0.0438605 , -0.01390999, 0.05649086, 0.04363002, -0.01915026, -0.04412376, -0.04625799, 0.00250358, -0.01445448, -0.0549707 , -0.03246034, 0.05128665, 0.02786998, 0.05596329, -0.00467303, 0.05363059, -0.05618523, -0.05351293, 0.05294608, 0.05418331, 0.05172252, -0.05613088, 0.04158759, -0.0531192 , -0.00016934, 0.04018888, 0.04438653, -0.05590613, -0.05545995, -0.05568601, 0.04614003, 0.0515261 , -0.05565028, 0.05064454, 0.04195472, -0.05663871, 0.02045964, 0.05661396, 0.01868009, 0.04616543, -0.05425839, 0.02895739, -0.00870576, -0.05060951, 0.05448073, -0.03053513, 0.05588634, 0.05284701, 0.0387537 , 0.05663617, 0.01202832, 0.05647126, 0.05554701, -0.04252514, -0.01016596, -0.05591315, 0.04815601, 0.02560365, 0.03293224, 0.05663871, -0.03906305, -0.05614728, -0.00922975, 0.03632371, -0.04679849, 0.00541904, -0.0483457 , 0.04948195, 0.05629317, -0.05365576, -0.0540406 , 0.04029153, -0.04976862, 0.05627936, 0.00623676, 0.04831374, 0.04152348, -0.05591218, 0.03268768, -0.05616672, 0.00461178, 0.05557774, -0.02102494, 0.04548164, -0.01191826, -0.03333873, -0.03785552, -0.05644065, 0.05057264, 0.0535511 , -0.03758802, 0.05241463, -0.03128109, 0.04006368, 0.05663619, 0.02352799, 0.03468762, -0.04845323, 0.05241161, -0.05661327, -0.03323733, 0.0562074 , -0.0532062 , 0.05125945, 0.05163905, -0.03261847, -0.03992615, 0.05551983, 0.05439377, 0.05566144, 0.01520137, -0.04974468, -0.05259595, -0.05453914, -0.05373696, 0.00099202, 0.03560246, -0.04520666, 0.05654072, -0.04186178, 0.05656121, -0.05306372, -0.03237957, 0.04866744, 0.05546519, -0.05446809, 0.02790952, -0.02287924, 0.01771197, -0.02117336, -0.05658579, 0.02544056, -0.05613875, -0.00273917, -0.04361826, 0.05231266, -0.04763988, 0.05401538, 0.05242627, 0.00802161, -0.03727852, -0.05454857, 0.05630051, -0.05627939, -0.03195082, 0.05663869, 0.03092248, -0.0566386 , -0.05579765, 0.04760486, -0.04988462, -0.04649271, 0.05289843, 0.04974864, -0.02068705, -0.03956971, -0.04818833, 0.01898351, -0.05663871, -0.05455592, 0.04776748, 0.05336981, -0.01439432, -0.03554876, 0.05509063, 0.0529646 , -0.01606726, 0.04869639, 0.0565936 , 0.05117821, 0.05582917, 0.04640149, -0.04383011, 0.05116829, -0.04927861, -0.05622511, 0.03731203, 0.03827041, 0.05329274, 0.03752604, 0.04686715, -0.05653588, 0.0525238 , -0.00743251, -0.04215745, -0.05066058, 0.03327134, -0.05321286, 0.0284178 , 0.05511777, -0.04277489, -0.04043424, 0.02011093, 0.05063638, 0.05647369, -0.05660866, -0.05375618, -0.02472765, -0.05039553, 0.0210466 , -0.02123819, -0.05449731, -0.0495085 , -0.05599762, 0.01672727, -0.03641875, -0.0109718 , 0.0197558 , -0.05473058, -0.03824357, -0.04720744, -0.02279065, 0.05560668, -0.04888083, -0.0543465 , 0.05614474, 0.05656378, -0.05269594, -0.04969141, 0.03275722, -0.04788459, -0.00249315, -0.02697386, -0.05160728, 0.04478324, 0.04320117, -0.05504712, -0.05186576, -0.03642318, 0.05662105, 0.0219523 , -0.02522418, -0.02286198, -0.05325816, -0.01484585, 0.05663819, -0.03145841, -0.04733086, 0.02927428, -0.02253605, 0.04772612, 0.04731531, -0.05653518, 0.01324066, -0.03877051, -0.02176844, -0.05550387, -0.05629394, 0.03758418, -0.05630903, -0.02910103, -0.04853559, -0.04942301, -0.02937661, 0.04367953, -0.04979736, -0.0544776 , -0.05663146, 0.00049248, 0.05663855, -0.05391856, -0.03783586, 0.03743649, 0.04993442, 0.04803006, 0.0566255 , -0.05663816, 0.03799942, 0.00489313, 0.0294361 , -0.03560543, 0.01455918, -0.0566387 , -0.0045967 , -0.05587058, -0.04253622, 0.02515171, -0.04162445, 0.05623724, -0.02933892, 0.05354614, -0.05659237, 0.01207218, 0.05556235, -0.00630465, -0.05662564, -0.01850525, 0.05583531, 0.04880809, 0.03923202, 0.05379379, -0.05649344, 0.01326263, -0.02756828, -0.03858707, 0.02329104, -0.05156119, 0.03547219, 0.05663704, 0.02843156, -0.00453846, -0.03434811, -0.03759045, -0.05455792, -0.01064915, -0.05663871, 0.05413051, 0.05407911, -0.05658937, 0.01777141, -0.04965514, 0.0557703 , -0.05490747, -0.05608686]], dtype=float32)>

Now we need to compute the cosine similarity of this vector against all of the sentence-level vectors in the Global Similarity Graph Television News Sentence Embeddings dataset to find potential references to it.

We just copy-paste the vector above into a simple SQL + UDF query in BigQuery which yields:

CREATE TEMPORARY FUNCTION cossim(a ARRAY<FLOAT64>, b ARRAY<FLOAT64>)
RETURNS FLOAT64 LANGUAGE js AS '''
var sumt=0, suma=0, sumb=0;
for(i=0;i<a.length;i++) {
sumt += (a[i]*b[i]);
suma += (a[i]*a[i]);
sumb += (b[i]*b[i]);
}
suma = Math.sqrt(suma);
sumb = Math.sqrt(sumb);
return sumt/(suma*sumb);
''';

WITH query AS (
select [0.04630536, -0.04385197, -0.05280872, -0.04773887, -0.00309931,
0.05450295, -0.02673355, -0.05545911, 0.05327506, 0.04394556,
-0.03168765, 0.05503967, 0.00442976, -0.05656279, 0.05117863,
0.0158463 , 0.05592725, 0.03598066, -0.03839573, -0.00109333,
-0.05644736, -0.05434908, -0.02864576, -0.04568801, 0.05557097,
-0.02160742, -0.03676632, -0.00822768, 0.00673328, 0.05361567,
0.02790285, 0.01862041, -0.04964391, -0.00603407, 0.02612479,
-0.05509547, 0.01189164, 0.02481853, 0.05586883, 0.04517639,
0.0466411 , 0.050674 , 0.04127763, -0.05451256, -0.05663854,
0.05264238, -0.01035258, 0.02292279, 0.01242081, -0.04307327,
-0.05607928, 0.01975088, -0.0522441 , -0.03337459, 0.00374916,
0.03055446, -0.05663315, -0.01754221, 0.05500044, 0.04655377,
0.01067017, -0.04976329, 0.05180267, -0.05604182, -0.05621086,
-0.05376201, 0.05308988, 0.05225808, 0.02736193, 0.05039906,
0.04467546, 0.04993341, -0.01599472, 0.05476574, -0.03768978,
0.03524011, 0.038475 , -0.04673229, 0.05104368, 0.03713217,
0.05663855, -0.03777216, 0.04949455, 0.05450713, 0.0121822 ,
0.04588546, 0.03606191, -0.05663596, -0.00443359, -0.00486312,
0.04559771, -0.03937602, 0.05089479, 0.05131284, -0.05663429,
0.011048 , -0.03472014, 0.05651702, 0.05602308, -0.03779978,
-0.04273533, 0.02687778, -0.00161195, 0.0483719 , 0.05653317,
-0.02144088, -0.02948533, -0.03920264, 0.05462149, -0.04935208,
-0.05296955, -0.04880546, -0.00295182, 0.04659003, -0.05461466,
-0.01888734, 0.05398951, 0.02089173, 0.05544703, 0.05631928,
0.05661533, -0.01530546, 0.02082386, 0.0565156 , 0.0480477 ,
0.05597575, 0.05648562, -0.03431455, -0.02098618, 0.05572988,
0.04933405, 0.05657511, 0.05287464, -0.04752011, -0.0127286 ,
-0.05533136, -0.05246781, -0.05286954, -0.01377515, -0.05659974,
-0.05340074, 0.05663871, -0.05304778, 0.0356891 , 0.05625559,
-0.03166396, -0.02535708, 0.05566574, -0.05334753, 0.03626539,
-0.05652655, -0.02445913, -0.04480174, -0.0536372 , -0.05637573,
0.05520798, 0.00620194, 0.00769248, -0.00251708, 0.02002978,
0.01431433, -0.05497971, 0.05050481, 0.00775918, -0.05434256,
0.05292607, 0.05663849, 0.03883202, -0.05636555, 0.02466718,
0.05662578, -0.0565693 , 0.05112001, -0.03461725, -0.05163195,
0.05614306, 0.01156624, -0.02751734, -0.05663678, -0.04754735,
-0.03358746, 0.04703908, -0.05295394, -0.0298285 , 0.0561368 ,
-0.00339463, -0.04886793, -0.05578013, -0.00150067, -0.04190002,
-0.03766162, -0.05042543, -0.0564624 , 0.05586027, -0.05423312,
-0.05428811, 0.01233629, -0.03560453, 0.0438605 , -0.01390999,
0.05649086, 0.04363002, -0.01915026, -0.04412376, -0.04625799,
0.00250358, -0.01445448, -0.0549707 , -0.03246034, 0.05128665,
0.02786998, 0.05596329, -0.00467303, 0.05363059, -0.05618523,
-0.05351293, 0.05294608, 0.05418331, 0.05172252, -0.05613088,
0.04158759, -0.0531192 , -0.00016934, 0.04018888, 0.04438653,
-0.05590613, -0.05545995, -0.05568601, 0.04614003, 0.0515261 ,
-0.05565028, 0.05064454, 0.04195472, -0.05663871, 0.02045964,
0.05661396, 0.01868009, 0.04616543, -0.05425839, 0.02895739,
-0.00870576, -0.05060951, 0.05448073, -0.03053513, 0.05588634,
0.05284701, 0.0387537 , 0.05663617, 0.01202832, 0.05647126,
0.05554701, -0.04252514, -0.01016596, -0.05591315, 0.04815601,
0.02560365, 0.03293224, 0.05663871, -0.03906305, -0.05614728,
-0.00922975, 0.03632371, -0.04679849, 0.00541904, -0.0483457 ,
0.04948195, 0.05629317, -0.05365576, -0.0540406 , 0.04029153,
-0.04976862, 0.05627936, 0.00623676, 0.04831374, 0.04152348,
-0.05591218, 0.03268768, -0.05616672, 0.00461178, 0.05557774,
-0.02102494, 0.04548164, -0.01191826, -0.03333873, -0.03785552,
-0.05644065, 0.05057264, 0.0535511 , -0.03758802, 0.05241463,
-0.03128109, 0.04006368, 0.05663619, 0.02352799, 0.03468762,
-0.04845323, 0.05241161, -0.05661327, -0.03323733, 0.0562074 ,
-0.0532062 , 0.05125945, 0.05163905, -0.03261847, -0.03992615,
0.05551983, 0.05439377, 0.05566144, 0.01520137, -0.04974468,
-0.05259595, -0.05453914, -0.05373696, 0.00099202, 0.03560246,
-0.04520666, 0.05654072, -0.04186178, 0.05656121, -0.05306372,
-0.03237957, 0.04866744, 0.05546519, -0.05446809, 0.02790952,
-0.02287924, 0.01771197, -0.02117336, -0.05658579, 0.02544056,
-0.05613875, -0.00273917, -0.04361826, 0.05231266, -0.04763988,
0.05401538, 0.05242627, 0.00802161, -0.03727852, -0.05454857,
0.05630051, -0.05627939, -0.03195082, 0.05663869, 0.03092248,
-0.0566386 , -0.05579765, 0.04760486, -0.04988462, -0.04649271,
0.05289843, 0.04974864, -0.02068705, -0.03956971, -0.04818833,
0.01898351, -0.05663871, -0.05455592, 0.04776748, 0.05336981,
-0.01439432, -0.03554876, 0.05509063, 0.0529646 , -0.01606726,
0.04869639, 0.0565936 , 0.05117821, 0.05582917, 0.04640149,
-0.04383011, 0.05116829, -0.04927861, -0.05622511, 0.03731203,
0.03827041, 0.05329274, 0.03752604, 0.04686715, -0.05653588,
0.0525238 , -0.00743251, -0.04215745, -0.05066058, 0.03327134,
-0.05321286, 0.0284178 , 0.05511777, -0.04277489, -0.04043424,
0.02011093, 0.05063638, 0.05647369, -0.05660866, -0.05375618,
-0.02472765, -0.05039553, 0.0210466 , -0.02123819, -0.05449731,
-0.0495085 , -0.05599762, 0.01672727, -0.03641875, -0.0109718 ,
0.0197558 , -0.05473058, -0.03824357, -0.04720744, -0.02279065,
0.05560668, -0.04888083, -0.0543465 , 0.05614474, 0.05656378,
-0.05269594, -0.04969141, 0.03275722, -0.04788459, -0.00249315,
-0.02697386, -0.05160728, 0.04478324, 0.04320117, -0.05504712,
-0.05186576, -0.03642318, 0.05662105, 0.0219523 , -0.02522418,
-0.02286198, -0.05325816, -0.01484585, 0.05663819, -0.03145841,
-0.04733086, 0.02927428, -0.02253605, 0.04772612, 0.04731531,
-0.05653518, 0.01324066, -0.03877051, -0.02176844, -0.05550387,
-0.05629394, 0.03758418, -0.05630903, -0.02910103, -0.04853559,
-0.04942301, -0.02937661, 0.04367953, -0.04979736, -0.0544776 ,
-0.05663146, 0.00049248, 0.05663855, -0.05391856, -0.03783586,
0.03743649, 0.04993442, 0.04803006, 0.0566255 , -0.05663816,
0.03799942, 0.00489313, 0.0294361 , -0.03560543, 0.01455918,
-0.0566387 , -0.0045967 , -0.05587058, -0.04253622, 0.02515171,
-0.04162445, 0.05623724, -0.02933892, 0.05354614, -0.05659237,
0.01207218, 0.05556235, -0.00630465, -0.05662564, -0.01850525,
0.05583531, 0.04880809, 0.03923202, 0.05379379, -0.05649344,
0.01326263, -0.02756828, -0.03858707, 0.02329104, -0.05156119,
0.03547219, 0.05663704, 0.02843156, -0.00453846, -0.03434811,
-0.03759045, -0.05455792, -0.01064915, -0.05663871, 0.05413051,
0.05407911, -0.05658937, 0.01777141, -0.04965514, 0.0557703 ,
-0.05490747, -0.05608686] as sentEmbed
)
SELECT cossim(doc.sentEmbed, query.sentEmbed) sim, date, lead, previewUrl FROM `gdelt-bq.gdeltv2.gsg_iatvsentembed` doc, query order by sim desc limit 10000

This computes the cosine similarity of the online CNN article against all 189 million television news sentences we have indexed, sorts them and returns the top 10,000 results in just 2 minutes 19 seconds, processing 740GB of data. This includes results like:

Looking at the examples above, you can see they range from references to the Oroville dam (note in particular the second example which includes a typo of the number zero instead of the letter "O" as the first character – despite this, it was successfully matched by the embedding due either to the surrounding context or that particular error being learned by the model. Other matches include similar drought scenarios in other states and dams. Thus, we can see that our similarity matches span a range of related topics, ranging from the Oroville dam to other dams and drought conditions.

Row sim date lead previewUrl
1
0.6741668599611813
2021-07-09 04:30:11 UTC
AND THE
https://archive.org/details/FOXNEWSW_20210709_040000_Fox_News_at_Night_With_Shannon_Bream/start/1811
2
0.6395988579530764
2017-02-13 06:08:35 UTC
The 0roville
https://archive.org/details/BBCNEWS_20170213_060000_Breakfast/start/515
3
0.6370076651118367
2020-08-16 20:13:40 UTC
THE GRIZZLY
https://archive.org/details/FOXNEWSW_20200816_200000_Americas_News_Headquarters/start/820
4
0.6347690433042713
2017-02-13 13:18:42 UTC
100,000 cubic
https://archive.org/details/BBCNEWS_20170213_130000_BBC_News_at_One/start/1122
5
0.6252144072018324
2021-06-19 23:40:50 UTC
CALIFORNIA'S LAKE
https://archive.org/details/CNNW_20210619_230000_CNN_Newsroom_With_Pamela_Brown/start/2450
6
0.6241855800570394
2021-06-18 20:59:44 UTC
CALIFORNIA'S GOVERNOR
https://archive.org/details/CNNW_20210618_200000_The_Lead_With_Jake_Tapper/start/3584
7
0.6200145592921962
2019-03-20 22:05:26 UTC
THE CORN
https://archive.org/details/FOXNEWSW_20190320_220000_Special_Report_With_Bret_Baier/start/326
8
0.6165421900657309
2018-07-07 18:26:15 UTC
Allison Freeman
https://archive.org/details/BBCNEWS_20180707_180000_BBC_News/start/1575
9
0.6161907674960817
2019-03-21 03:59:38 UTC
NEBRASKA'S GOVERNOR
https://archive.org/details/FOXNEWSW_20190321_030000_Fox_News__Night_With_Shannon_Bream/start/3578
10
0.6132639976605805
2017-02-14 23:19:38 UTC
THIS IS
https://archive.org/details/FOXNEWSW_20170214_230000_Special_Report_With_Bret_Baier/start/1178
11
0.6132639976605805
2017-02-15 09:19:37 UTC
THIS IS
https://archive.org/details/FOXNEWSW_20170215_090000_Special_Report_With_Bret_Baier/start/1177
12
0.6094720271845326
2021-07-27 04:43:27 UTC
FIRST UP,
https://archive.org/details/FOXNEWSW_20210727_040000_Fox_News_at_Night_With_Shannon_Bream/start/2607
13
0.6086538795352956
2021-06-08 08:43:35 UTC
Reporter: THE
https://archive.org/details/CNNW_20210608_080000_CNN_Newsroom_Live/start/2615
14
0.6080220537165019
2010-03-11 15:10:43 UTC
BILL: AND,
https://archive.org/details/FOXNEWS_20100311_140000_Americas_Newsroom/start/4243
15
0.6051966751641876
2019-03-21 07:59:40 UTC
NEBRASKA GOVERNOR
https://archive.org/details/FOXNEWSW_20190321_070000_Fox_News__Night_With_Shannon_Bream/start/3580
16
0.6035041483742971
2019-03-23 04:38:58 UTC
Water has
https://archive.org/details/BBCNEWS_20190323_043000_Our_World/start/538
17
0.6012150810264999
2014-04-22 13:53:04 UTC
IN SPRING
https://archive.org/details/MSNBCW_20140422_130000_The_Daily_Rundown/start/3184
18
0.6010209523813065
2010-08-22 21:23:43 UTC
Reporter: WELL,
https://archive.org/details/FOXNEWS_20100822_200000_Americas_News_HQ/start/5023
19
0.6000816550550897
2018-08-08 10:08:39 UTC
Officials now
https://archive.org/details/BBCNEWS_20180808_100000_BBC_Newsroom_Live/start/519
20
0.5997685621076374
2015-06-09 17:53:38 UTC
Reporter: CRITICS
https://archive.org/details/FOXNEWSW_20150609_170000_Happening_Now/start/3218

We hope this inspires you with your own ideas for multimodal search of television using online news coverage!